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R O T A T I N G  

The in teres t  in a r c s  in a magnetic field displacing relat ive to a gas s t r eam has been rekindled in 
recen t  yea r s  [1-4]. Although such a rcs  find application in experimental  pract ice ,  the phenomena taking 
place therein have received ve ry  little study. 

A convenient subject for  study of the p rocesses  in a moving plasma are a rcs  rotat ing in stat ionary 
magnetic fields. Separate measurements  were made in [3, 4] of the ionization front propagation velocity 
and the frequencies of the oscillations which develop in the plasma.  Unfortunately, the experimental  
conditions were not comparable .  The present  paper is devoted to simultaneous study of these interrela ted 
phenomena. 

The experimental  setup is shown in Fig.  1. The pa rame te r s  of the oscillations in the a rc  column 
and its ra te  of rotation were determined f rom the fluctuations of the radial  and azimuthal components of 
the e lec t r ic  field and the oscillation of the brightness of the a rc  se l f - radia t ion in the 6328 * 40 A range. 
The diameter  of the luminous a rea  from which the light was gathered was 1.5-2 ram, the p res su re  var ied 
f rom 5 to 20 T o r t ,  the discharge cur ren t  var ied  f rom 0.05 to 0.40 A. Argon was used as the working 
medium. 

When the magnetic field was imposed the a rc  began to rotate.  Figure 2a shows an osc i l logram of 
the self - radiat ion,  f rom which we determined the a rc  rotation period.  Similar osc i l lograms  were obtained 
with the aid of dual probes .  The rotation frequency w and the l inear  velocity V of the a rc  motion as a 
function of magnetic field intensity are  shown in Fig. 3a~ In these experiments  the gas p r e s su re  was 10 
Tor r ,  the a rc  cur rent  was 0.11 A, and the voltage drop ac ros s  the a re  was 50-60 Vo 

The l inear  velocity of the arc  rotation is close to the ionization front velocity (Fig. 3b) measured  
under s imi la r  conditions [3], although it does exceed the la t te r  somewhat.  This may be explained by 
entrainment  of gas by the rotating motion of the a rc .  

Since the gas p r e s su re  and cur ren t  density in the arc  are  low, it follows f rom [3] that the arc must  
be scavenged with a s t r eam of neutral  gas. Such an arc  is best  described by the so-cal led  porous cylinder model. 

The dependence of the a rc  rotation rate on the magnetic field intensity, calculated f rom the relation 

j• ~ m~o(v  - Va~ 

was close to that shown in Fig.  3a. 

Here j is the arc  current  density, H is the magnetic field intensity, c is the speed of light, n i is the 
charged part icle concentration, m k is the reduced mass ,  ~ a  is the charged par t ic le -neut ra l  coll ision 
frequency, V a is the neutral gas velocity increase  owing to rotational motion of the a re .  

In studying the individual luminous pulses, we detected the s t ruc ture  (Fig. 2b and c) corresponding 
to internal,  comparat ively  low-frequency (1-10 kHz) oscillations of the plasma inside the a r c  column. The 
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Fig.  1. Exper imenta l  setup: 1,2) e l ec t romagne t  polos;  3) g lass  
ve s se l ;  4) hollow cyl indrical  anode with inside d i a m e t e r  80 mm;  5) 
heated cathode with outer  d i a m e t e r  25 ram; 6) ro ta t ing  p r i s m  for  
br inging out a r e  se l f - r ad ia t ion ;  7) a r e ;  8) t r i p l e - e l ec t rode  probe  with 
2~ dis tances  between e lec t rodes ;  9) thermoeouple ;  10,11) fit t ings 
for  a rgon  in and out; 12) converging lens;  13) visual  f ield d iaphragm; 
14) in t e r fe rence  f i l te r ;  15) photomul t ip l ie r .  

Fig.  2. Osc i l l og rams :  a) a rc  se l f - r ad ia t ion  pulses ;  b) s e l f - r ad ia t ion  
pulse s t ruc tu re ;  c ) h i g h - f r e q u e n c y  osci l la t ions  of p l a sma  luminosi ty ;  
d) f requency spec t rum of luminos i ty  osc i l la t ions .  

c h a r a c t e r i s t i c  spec t rum of these  osc i l la t ions ,  obtained using a spec t rum ana lyze r ,  is shown in Fig.  2d. 
The osci l la t ion f requency co is l inea r ly  r e l a t ed  with the magnet ic  field intensi ty (Fig. 3e). In the probe 
m e a s u r e m e n t s  these  osci l la t ions  were  obse rved  only at  f r e q u e n c i e s  close to 10 kHz.  Similar  osci l la t ions 
obse rved  prev ious ly  using the p robe  method were  in te rp re ted  as osci l la t ions of the dr if t  type [4]. 

In our  expe r imen t s  both dr i f t  and magne toacous t ic  osci l la t ions  could a r i s e  [5-7]. Measuremen t s  of 
the ampli tude of the a r c  p l a sma  densi ty gradient  osci l la t ions  by the sch l i e ren  method using a He -- Ne l a s e r  
were  under taken in o rde r  to c la r i fy  the nature  of the osc i l la t ions .  In view of the smal l  degree  of ionization 
the effect  of the e lec t ron ic  component  could be neglected.  The sensi t iv i ty  of the setup with r e s p e c t  to argon 
was 101~ cm -4 a toms .  The ampli tude of the osci l la t ions  was below this magnitude and re l iab le  ampli tude 
m e a s u r e m e n t s  could not be made .  
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Fig. 3~ Curves: a) arc  rotation frequency; b) 
ionization front velocity; c) frequency of internal 
oscillations of arc  plasma as a function of the 
magnetic field intensity. 

Thus, the study showed the following: 1) the arc  i'otation velocity is very close to the ionization front 
propagation velocity; 2) both the arc  rotation velocity and self-oscillation frequencies are l inearly connected 
with the intensity of the external magnetic field; 3) the density oscillation amplitudes are very small and 
for the neutral component amount to less than 10% of the average value. 
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